Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 917: 170373, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286297

ABSTRACT

Peroxyacetyl nitrate (PAN) is a significant indicator of atmospheric photochemical pollution, which can influence the regional distribution of ozone (O3) and hydroxyl radical (OH) through long-range transport. However, investigations of PAN incorporating comprehensive measurement and explicit modeling analysis are limited, hindering complete understandings of its temporal behavior, sources, and impacts on photochemistry. Here we conducted a 1-year continuous observation of PAN and relative atmospheric species in Nanjing located in Yangtze River Delta (YRD). The annual mean concentration of PAN was 0.62 ± 0.49 ppbv and showed a bimodal monthly variation, peaking in April-June and November-January, respectively. This pattern is different from the typical pattern of photochemistry, suggesting important contributions of other non-photochemical processes. We further analyzed the PAN budget using an observation-based model, by which, PAN from local photochemical production and regional source could be decoupled. Our results revealed that local photochemical production of PAN is the sole contributor to PAN in summer, whereas about half of the total PAN concentration is attributed to regional source in winter. Although the formation of PAN can suppress the atmospheric oxidation capacity by consuming the peroxyacetyl radical and nitrogen dioxide (NO2), our analyses suggested this effect is minor at our station (-3.2 ± 1.1 % in summer and - 7.2 ± 2.8 % in winter for O3 formation). However, it has the potential to enhance O3 and OH formation by 14.16 % and 5.93 %, if transported to cleaner environments with air pollutants halved. Overall, our study highlights the importance of both local photochemistry and regional process in PAN budget and provides a useful evaluation on the impact of PAN on atmospheric oxidation capacity.

2.
Environ Sci Technol ; 58(2): 1223-1235, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38117938

ABSTRACT

Nanoparticle growth influences atmospheric particles' climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics' contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations <0.3 µg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32-46%) as 4-40 nm particles grow. Alkanes also contribute 19-35% of GRs, while biogenic volatile organic compounds contribute minimally (<13%). Our model helps assess the climatic impacts of particles and predict future changes.


Subject(s)
Volatile Organic Compounds , Atmosphere/chemistry , Gases , Alkanes , Oxidation-Reduction , Aerosols
3.
Natl Sci Rev ; 8(2): nwaa137, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34676092

ABSTRACT

To control the spread of the 2019 novel coronavirus (COVID-19), China imposed nationwide restrictions on the movement of its population (lockdown) after the Chinese New Year of 2020, leading to large reductions in economic activities and associated emissions. Despite such large decreases in primary pollution, there were nonetheless several periods of heavy haze pollution in eastern China, raising questions about the well-established relationship between human activities and air quality. Here, using comprehensive measurements and modeling, we show that the haze during the COVID lockdown was driven by enhancements of secondary pollution. In particular, large decreases in NOx emissions from transportation increased ozone and nighttime NO3 radical formation, and these increases in atmospheric oxidizing capacity in turn facilitated the formation of secondary particulate matter. Our results, afforded by the tragic natural experiment of the COVID-19 pandemic, indicate that haze mitigation depends upon a coordinated and balanced strategy for controlling multiple pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL
...